Operation modulo n : moon.

Pvz.2. $n=2: \forall a \in \mathcal{L} \longrightarrow a \bmod 2=\left\{\begin{array}{l}0, \text { it } a \text { even } \\ 1, \text { if } a \text { odd }\end{array}\right.$
$a \bmod 2 \in\{0,1\}$
$\mathcal{L} \bmod 2=\{0,1\} ; \quad f_{2}=\bmod 2 \rightarrow f(\mathcal{I})=\{0,1\}=\mathcal{L}_{2}$
$f_{2}: \mathcal{L} \rightarrow \mathcal{L}_{2}=\{0,1\}$
\mathscr{L}_{2} arithmetic : $\left\langle\mathcal{L}_{2}, \oplus, \&\right\rangle$

(1) $\begin{aligned} & \text { XOR } \\ & \text { Exclusive OR }\end{aligned}$

\bullet	e	σ
e	e	e
θ	e	θ

\& \theta \equiv 1\end{aligned} \quad\)| $\&$ | 0 | 1 |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 1 | 0 | 1 |$\quad \& A N D \quad$ Conjunction $\quad \cap$ And

XOR and AND logical operations in Boolean algebra can be illustrated by dartboard game.
Single Boolean variable can be represented by the set of 2 values $\{0,1\}$ or $\{$ Yes,No $\}$ or $\{$ True, False $\}$.
Let \boldsymbol{U} is some universal set containing all other sets (we do not take into account paradoxes related with \boldsymbol{U} now).
Let \boldsymbol{A} be a set in \boldsymbol{U}. Then with the set \boldsymbol{A} in \boldsymbol{U} can be associated a Boolean variable $\boldsymbol{b}_{A}=1$ if area \boldsymbol{A} is hit by missile
$\boldsymbol{b}_{\boldsymbol{A}}=0$ otherwise.

For this single variable b_{A} the negation operation ` is defined: \(\boldsymbol{b}_{\boldsymbol{A}}{ }^{`}=0\) if $\boldsymbol{b}_{\boldsymbol{A}}=1$,
$\boldsymbol{b}_{\boldsymbol{A}}{ }^{`}=1$ if $\boldsymbol{b}_{\boldsymbol{A}}=0$.
Bollean operations are named also as Boolean functions.
Since negation operation/function is performed with the singe variable it is called a unary operation.

There are 16 Boolean functions defined for 2 variables and called binaryfunctions.
Two of them XOR and AND are illustrated below.
$A \oplus B$

$A \oplus B$

Venn diagram of $\boldsymbol{A} \oplus \boldsymbol{B}$ operation.

Venn diagram of $\mathbf{A} \& \mathbf{B}$ operation.
\mathcal{I}_{n} arithmetic $(n<\infty): \mathscr{L} \bmod n=\mathscr{L}_{n}=\left\{\begin{array}{|l|l|}\{0,1,2, \ldots, n-1\} \\ n\end{array}\right.$
I_{n} is a ring with operations $t_{\bmod n}$ ir $\cdot \bmod n$ $\forall a, b \in \mathcal{I}_{n}: a+\operatorname{T\operatorname {mod}n} b=c \in \mathcal{I}_{n} \quad \forall$ Inverse operate. $a \cdot \bmod n b=d \in \mathcal{I}_{n}-\bmod n$
$a+b=c \bmod n$
$a \cdot b=d \bmod n$
Operation properties:
$(a+b) \bmod n=(a \operatorname{mad} n+b \operatorname{mad} n) \bmod n$
$(a \cdot b) \bmod n=(a \bmod n \cdot b \bmod n) \bmod n$
$(a-b) \bmod n=\left\{\begin{array}{l}a-b, j e i \quad a \geqslant b \\ a+n-b, j e i a<b\end{array}\right.$
For given $b \in \mathcal{I}_{n}$. Find: $-b \in \mathscr{L}_{n}: b+(-b)=0 \in \mathscr{L}_{n}$
$-b \bmod n=(0-b) \bmod n=(n-b) \bmod n=n-b$
Aololitively neutral - b mod $n=n-b \quad$ [Octave]

$$
b+(-b)=b+n-b=b-b+n=n \bmod n=0
$$

$\left.\left(a^{r} \cdot a^{s}\right) \bmod n=a^{r+s} \bmod n\right\}$ Depending of n the operations $\left(a^{r}\right)^{s} \bmod n=a^{r \cdot s} \bmod n\left\{\begin{array}{c}r+s \\ r \cdot s\end{array}\right\}$ in exponents will be computed differently.
Let $n=p=11$

$$
\text { Then } \mathcal{Z}_{n}=\{0,1,2,3, \ldots, 10\}
$$

Let we have any set \boldsymbol{G}（not necessary finite）consisting of the elements of any nature，ie． $\boldsymbol{G}=\{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \ldots, z, \ldots\}$ ．
1．Definition．A set \mathbf{G} is an algebraic group if it is equipped with a binary operation • that satisfies four axioms：
1．Operation \bullet is closed in the set；for all $\boldsymbol{a}, \boldsymbol{b}$ ，there exists unique \boldsymbol{c} in \mathbf{G} such that $\boldsymbol{a} \bullet \boldsymbol{b}=\boldsymbol{c}$ ．
2．Operation \bullet is associative；for all $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ in $\boldsymbol{G}:(\boldsymbol{a} \bullet \boldsymbol{b}) \bullet \boldsymbol{c}=\boldsymbol{a} \bullet(\boldsymbol{b} \bullet \boldsymbol{c})$ ．
3．Group \boldsymbol{G} has an neutral element abstractly we denote by \boldsymbol{e} such that $\boldsymbol{a} \bullet \boldsymbol{e}=\boldsymbol{e} \boldsymbol{\bullet} \boldsymbol{a}$ ．
4．Any element \boldsymbol{a} in \boldsymbol{G} has its inverse \boldsymbol{a}^{-1} with respect to \bullet operation such that $\boldsymbol{a} \bullet \boldsymbol{a}^{-1}=\boldsymbol{a}^{-1} \boldsymbol{\bullet}=\boldsymbol{e}$ ．
5．If $\boldsymbol{a} \bullet \boldsymbol{b}=\boldsymbol{b} \bullet \boldsymbol{a}$ then group \boldsymbol{G} is commutative group．
Division operation is defined： $\boldsymbol{a}: \boldsymbol{b}=\boldsymbol{a} \boldsymbol{\bullet} \boldsymbol{b}^{-1}$
To divide \boldsymbol{a} by \boldsymbol{b}^{-1} it is necessary to find multiplicatively inverse element \boldsymbol{b}^{-1} to \boldsymbol{b} such that $\boldsymbol{b}^{-1} \boldsymbol{\bullet}=\boldsymbol{b} \cdot \boldsymbol{b}^{-1}=1$ ．
We will deal with commutative groups．
For curiosity，can be said that group axioms seems very simple but groups and their mappings describes a very deep and fundamental phenomena in physics and other sciences．Among these mappings a special importance have mappings preserving operations from one group to another called isomorphisms，or homomorphisms and morphisms in general．Isomorphisms have a great importance in cryptography to realize a secure confidential cloud computing．It is named as computation with encrypted data．The systems having a homomorphic property are named as homomorphic cryptographic systems．They are under the development and are very useful in creation of secure e－voting systems，confidential transactions in blockchain and etc． There we present one very important isomorphism example later when consider so called discrete exponent function（DEF）．

11．Theorem．If p is prime，then $\mathcal{L}_{p}^{*}=\{1,2,3, \ldots, p-1\}$ where operation is multiplication $⿻ 丷 木 \bmod p$ is a multiplicative group：$\left\langle\mathcal{Z}_{p}^{*}, * \bmod p\right\rangle$ Example：$p=11 \Rightarrow \mathcal{Z}_{p}^{*}=\{1,2,3, \ldots, 10\}$

4.4 mourn=

$$
4^{-1}=3 \bmod 11
$$

$$
\begin{aligned}
& \mathcal{L}_{11}^{*}=\{1,2,3, \ldots, 10\} \\
& \mathcal{L}_{10}=\{0,1,2,3,4,5,6,7,8,9\}
\end{aligned}
$$

$$
\text { DEF: } \mathscr{L}_{10} \rightarrow \mathcal{L}_{11}^{*}
$$

$$
D E F_{2}(x)=2^{x} \bmod p
$$

$\left.\begin{array}{l}\operatorname{card}\left(\mathcal{J}_{10}\right)=\left|\mathcal{L}_{10}\right|=10 \\ \operatorname{card}\left(\mathcal{I}_{11}^{*}\right)=\left|\mathcal{L}_{11}^{*}\right|=10\end{array}\right\} \Rightarrow \operatorname{card}\left(\mathcal{I}_{10}\right)=\operatorname{card}\left(\mathcal{Z}_{11}^{*}\right)$
It is proved that:
if p is prime, then there exists such numbers g that $D E F_{g}(x)$ provides $1-$ to -1 or bijective mapping.

Power Tab.
$\mathrm{Z}_{11}{ }^{*}$
$\wedge \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10$ The set of numbers

1	1	1	1	1	1	1	1	1	1	1	1	
(2)	1	2	4	8	5	10	9	7	3	6	1	are generating all the
3	1	3	9	5	4	1	3	9	5	4	1	numbers in the set \mathcal{L}_{11}

4	1	4	0	y	5	1	4	0	y	5	1
5	1	5	3	4	9	1	5	3	4	9	1
6	1	6	3	7	9	10	5	8	4	2	1
7	1	7	5	2	3	10	4	6	9	8	1
8	1	8	9	6	4	10	3	2	5	7	1
9	1	9	4	3	5	1	9	4	3	5	1
10	1	10	1	10	1	10	1	10	1	10	1

is named as a set of generat of $\Gamma_{11}=\{2,6,7,8\}$

Let G be a finite group with $\operatorname{Gard}(G)=|G|=N$.
Def. 1. The element g is a generator if $g i, i=0,1,2, N-1$, generates all N elements of G.
Def. 2. The group G which can be generated by generator g is a cyclic group and is denoted by $\langle g\rangle=G$.
$\left.<\mathcal{L}_{p}^{*},{ }^{*} \bmod p\right\rangle ; \mathcal{Z}_{p}^{*}=\{1,2,3, \ldots, p-1\} ; p \sim 2^{2048} \approx 10^{670}$
If g is a generator: $\mathcal{L}_{p}^{*}=\left\{g^{e} \mid e=0,1,2, \ldots, p-2\right\}$

$$
e \in \mathcal{L}_{p-1}=\{0,1,2, \ldots, p-2\}
$$

T2. Fermat (little)Theorem. If p is prime, then [Sakalauskas at al.]

$$
z^{p-1}=1 \bmod p
$$

Using this theorem we can prove that if $\mathbf{z}=\boldsymbol{g}$ is a generator then DEF is 1-to-1 mapping:
DEF: $\boldsymbol{Z}_{p-1} \rightarrow \boldsymbol{Z}_{p}{ }^{*}$;

$$
\operatorname{DEF}(x)=g \bmod p=a
$$

computation of exponent values in \mathscr{L}_{p}^{*}

$$
a^{x \cdot y+z} \bmod p
$$

$$
a^{p-1} \bmod p=1=a^{0} \bmod p \Rightarrow p-1 \equiv 0 \bmod (p-1)
$$

The exponent relontion $x \cdot y+z$ can be reduced $\bmod (p-1)$

$$
-\frac{p-1}{-\frac{p-1}{0}} \frac{L p-1}{1}
$$

$$
\left(a^{x \cdot y+z}\right) \bmod p=a^{(x \cdot y+z) \bmod (p-1)} m
$$

$\bmod p$

C.5.3 Finding generators.

We have to look inside $\boldsymbol{Z}_{P}{ }^{*}$ and find a generator. How?
Even if we have a candidate, how do we test it?
The condition is that $\langle g\rangle=\boldsymbol{G}$ which would take $|\boldsymbol{G}|$ steps to check: $p^{\sim} 2^{2048}-->|G| \sim 2^{2048}$. In fact, finding a generator given p is in general a hard problem.

We can exploit the particular prime numbers names as strong primes.
If p is prime and $p=\mathbf{2 q + 1}$ with q prime then p is a strong prime.
Note that the order of the group $Z_{p}{ }^{*}$ is $p-1=2 q$, ie. $\left|Z_{p}{ }^{*}\right|=2 q$.
Fact C.23. Say $p=2 q+1$ is strong prime where $\boldsymbol{q}=(p-1) / 2$ is prime, then g in $Z_{p}{ }^{*}$ is a generator of $Z_{p}{ }^{*}$ iff $g^{2} \neq 1 \bmod p$ and $g^{Q} \neq 1 \bmod p$.
Testing whether g is a generator is easy given strong prime p.
Now, given $p=2 q+1$, the generator can be found by randomly generation numbers $g<p$ and verifying two relations. The probability to find a generator is ~ 0.4.

How to fing more generators when g one is found?
Fact C.24. If g is a generator and \boldsymbol{i} is not divisible by \boldsymbol{q} and $\mathbf{2}$ then g^{i} is a generator as well, ie. If g is a generator and $\operatorname{gcd}(i, q)=1$ and $\operatorname{gcd}(i, 2)=1$, then g^{i} is a generator as well.

How to find inverse element to $z \bmod n$?
>> mulinv(z,n)
Inverse elements in the Group of integers $\left\langle\mathbf{Z}_{\mathrm{p}}{ }^{*}, \bullet \bmod p>\right.$ can be found using either
Extended Euclidean algorithm or Fermat theorem, or ...

$$
\begin{aligned}
& z \in \mathcal{L}_{p}^{*} \text {; to find } z^{-1} \operatorname{such} \text { that } z \cdot z^{-1}=z^{-1} * z=1 \bmod p \\
& z^{p-1}=1 \bmod p / \cdot z^{-1} \Rightarrow z^{p-1} \cdot z^{-1}=z^{-1} \bmod p \Rightarrow \\
& \Rightarrow z^{-1}=z^{p-1} \cdot z^{-1} \bmod p \Rightarrow z^{-1}=z^{p-2} \bmod p \\
& z^{-1}=z^{p-2} \bmod p
\end{aligned}
$$

Operations in exponents.

$$
a^{r} \cdot a^{s} \bmod p=a^{(t+s} \quad \text { od }(p-1) \text { Modp)According to Fermat th. }
$$

operations in exprovenis.
$a^{r} \cdot a^{s} \bmod p=a^{(r+s} \quad$ od $(p-1)$
$\left.\left(a^{r}\right)^{s \bmod p}=a^{(r \cdot s) \bmod (p-1)} \bmod p\right\}$ we have.

$$
\left.\begin{array}{l}
z^{0}=1 \bmod p \\
z^{p-1}=1 \bmod p
\end{array}\right\} \Rightarrow 0 \equiv p-1 \text { in exponents } 0 \equiv p-1 \bmod (p-1)
$$

Needed example: to compute $s=t+x \cdot h \bmod (p-1)$ when s is in exponent of the generator g :

$$
\begin{aligned}
& g^{s}=g^{(t+x \cdot h) \bmod (p-1)} \bmod p=\frac{q}{r}_{t}^{(r)} \frac{\left(q^{x}\right)^{h}}{a} \bmod p . \\
& \operatorname{sign}(\operatorname{Prk}, h)=(r, s)
\end{aligned}
$$

Public Parameters generation

$$
P P=(p, g)
$$

p-strong prime \Rightarrow it is easy to generate generator by randomly choosing g values with probability ~ 0.4.

$$
\begin{array}{ll}
\gg \mathrm{p}=268435019 ; & \% 2^{\wedge} 28--\ggg \text { int 64(2^28-1) } \\
& \% \text { ans }=268435455 \\
\gg g=2 ; & \% \text { testing } g=2, g=3, \ldots . .
\end{array}
$$

Private and Public Keys generation

$$
\operatorname{PrK}=x
$$

$$
\text { Puke }=a
$$

$$
x=\operatorname{randi}\left(2^{\wedge 28}\right) \quad a=g^{x} \bmod p
$$

security of $P_{r} K$ is based on the difficulty of
Discrete Logarithm Problem - D LP.
when $p \sim 2^{2048}$, then $D C P$ is infeasible for classical-

- non-quantum computers.

Google
For İthereum
Go: 1. Pr \& Auk generation 2. Smart contract signing
solidity malware -))
secure Ark, Auk generation \& signing computer X
$($ Prk, PuL) \rightarrow Flashtoken
Go Trust (Taiwan)

