Operation modulo n: modn. Prz. 2. $h=2: \forall a \in \mathbb{Z} \longrightarrow a \mod 2 = \int_{1, if a odd} (e)$ $a \mod 2 \in L_0, 1$ a mod 2 E f 0, 1 } $I \mod 2 = \{0,1\}; \quad f_2 = \mod 2 \longrightarrow f(I) = \{0,1\} = I_2$ $f_2: \mathcal{I} \longrightarrow \mathcal{I}_2 = \{0, 1\}$ $\mathbb{Z}_{2} \quad \mathbb{A}_{2} = \mathbb{Z}_{1} \quad \mathbb{A}_{2} \quad \mathbb{A}_{2}$ $\begin{array}{c|c} \bullet & \bullet & \bullet \\ \hline \end{array} \begin{array}{c} \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet \\ \hline \end{array} \begin{array}{c} \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet \\ \hline \end{array} \begin{array}{c} \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet \\ \hline \end{array} \begin{array}{c} \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet \\ \hline \end{array} \begin{array}{c} \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet \\ \hline \end{array} \begin{array}{c} \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet \\ \hline \end{array} \begin{array}{c} \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet \\ \hline \end{array} \begin{array}{c} \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet \\ \hline \end{array} \begin{array}{c} \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet \\ \hline \end{array} \begin{array}{c} \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet \\ \hline \end{array} \begin{array}{c} \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet \\ \hline \end{array} \begin{array}{c} \bullet & \bullet & \bullet \\ \hline \end{array} \begin{array}{c} \bullet & \bullet & \bullet \\ \hline \end{array} \begin{array}{c} \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet \\ \hline \end{array} \begin{array}{c} \bullet & \bullet & \bullet \\ \hline \end{array} \begin{array}{c} \bullet & \bullet & \bullet \\ \hline \end{array} \begin{array}{c} \bullet & \bullet & \bullet \\ \hline \end{array} \begin{array}{c} \bullet & \bullet & \bullet \\ \hline \end{array} \begin{array}{c} \bullet & \bullet & \bullet \\ \hline \end{array} \begin{array}{c} \bullet & \bullet & \bullet \\ \hline \end{array} \begin{array}{c} \bullet & \bullet & \bullet \\ \hline \end{array} \begin{array}{c} \bullet & \bullet \\ \hline \end{array} \begin{array}{c} \bullet & \bullet \\ \hline \end{array} \begin{array}{c} \bullet & \bullet \\ \hline \end{array} \end{array} \begin{array}{c} \bullet & \bullet \\ \hline \end{array} \begin{array}{c} \bullet & \bullet \\ \hline \end{array} \begin{array}{c} \bullet & \bullet \\ \hline \end{array} \end{array} \begin{array}{c} \bullet & \bullet \\ \hline \end{array} \end{array} \begin{array}{c} \bullet & \bullet \\ \hline \end{array} \begin{array}{c} \bullet & \bullet \\ \hline \end{array} \end{array} \begin{array}{c} \bullet & \bullet \\ \end{array} \end{array} \end{array} \begin{array}{c} \bullet & \bullet \\ \end{array} \end{array} \begin{array}{c} \bullet & \bullet \\ \end{array} \end{array} \end{array} \begin{array}{c} \bullet & \bullet \\ \end{array} \end{array} \end{array} \begin{array}{c} \bullet & \bullet \\ \end{array} \end{array} \end{array}$

XOR and AND logical operations in Boolean algebra can be illustrated by dartboard game. Single Boolean variable can be represented by the set of 2 values $\{0,1\}$ or $\{Yes,No\}$ or $\{True,False\}$. Let U is some universal set containing all other sets (we do not takke into account paradoxes related with U now). Let A be a set in U. Then with the set A in U can be associated a Boolean variable $b_A=1$ if area A is hit by missile $b_A=0$ otherwise.

For this single variable b_A the negation operation ` is defined: b_A `=0 if b_A =1, b_A `=1 if b_A =0.

Bollean operations are named also as Boolean functions. Since negation operation/function is performed with the singe variable it is called a unary operation.

There are 16 Boolean functions defined for 2 variables and called binaryfunctions. Two of them XOR and AND are illustrated below.

AAB

I WO OI THEIH AUK AND AND ARE HIUSTRATED DEIOW.

Venn diagram of $A \oplus B$ operation.

Venn diagram of **A&B** operation.

 $\mathcal{I}_n \quad \text{avithmetic} \ (n < \infty): \ \mathcal{I} \ \text{mod} \ n = \mathcal{I}_n = \{0, 1, 2, \dots, n-1\}$ In is a ring with operations + moden in moden * Inverse operat. $\forall a, b \in \mathcal{J}_n : a \notin (mad_n) b = c \in \mathcal{J}_n$ – modn $a \circ mod n b = d \in I_n$ $a+b=c \mod n$ $a \cdot b = d \mod h$ $-\frac{n}{n}\frac{n}{1}$ Operation properties: (a + b) made = (a moden + b maden) maden $(a \cdot b) \mod n = (a \mod n \cdot b \mod n) \mod n$ =n modn $(a-b) \mod n = \begin{cases} a-b, jei \ a \ge b \\ d+h-b, jei \ a \ge b \end{cases}$ For given b EIn. Find : - b E In : b+ (-b) = D E In -b mod $n = (0^{-}b) \mod n = (n-b) \mod n = n-b$ Additively neutral b mod n = n - b [Octave] b+(-b) = b + n - b = b - b + n = n mod n = 0. $(a^{r} \cdot a^{s}) \mod n = a^{r+s} \mod n$ Depending of n the operations $(a^{r})^{s} \mod n = a^{r-s} \mod n$ \mathcal{F}^{r+s} in exponents will be $r \cdot s$ computed differently.

Let n = p = M

Then $\mathcal{I}_n = \mathcal{L}[0, 1, 2, 3, ..., 10]$

Let we have any set G (not necessary finite) consisting of the elements of any nature, i.e. $G = \{a, b, c, ..., z, ...\}$.

Definition. A set G is an algebraic group if it is equipped with a binary operation

 that satisfies four axioms:

- 1. Operation is closed in the set; for all a, b, there exists unique c in G such that $a \bullet b = c$.
- 2. Operation is associative; for all a, b, c in $G: (a \bullet b) \bullet c = a \bullet (b \bullet c)$.
- 3. Group G has an neutral element abstractly we denote by e such that $a \bullet e = e \bullet a$.
- 4. Any element **a** in **G** has its inverse a^{-1} with respect to operation such that $a \bullet a^{-1} = a^{-1} \bullet a = e$.
- 5. If $a \bullet b = b \bullet a$ then group *G* is commutative group.

Division operation is defined: $a:b = a \bullet b^{-1}$ To divide a by b^{-1} it is necessary to find multiplicatively inverse elemet b^{-1} to b such that $b^{-1} \bullet b = b \bullet b^{-1} = 1$. We will deal with commutative groups.

For curiosity, can be said that group axioms seems very simple but groups and their mappings describes a very deep and fundamental phenomena in physics and other sciences. Among these mappings a special importance have mappings preserving operations from one group to another called **isomorphisms**, or **homomorphisms** and **morphisms** in general. Isomorphisms have a great importance in cryptography to realize a secure confidential *cloud computing*. It is named as *computation with encrypted data*. The systems having a homomorphic property are named as *homomorphic cryptographic systems*. They are under the development and are very useful in creation of secure e-voting systems, confidential transactions in blockchain and etc. There we present one very important isomorphism example later when consider so called discrete exponent function (DEF).

T1. Theorem	<mark>.</mark> If <i>f</i>) is	; pr	ime	,7	the	h d	\mathbb{Z}_{p}^{*}	÷ 	{ 1, .	2, 3	,, p-13 whe	re c
is mult	i pli	cat	² ior) <i>*∕</i> 1	nd	1 p	íS	a	МL	el li f	lice	ative group: < c	Ip.
Example	2:	P	=1/	1 =	De	\mathcal{I}_{P}^{*}	= d	1,	2,-	3,.	9	10 }	
Multiplication	Tab.											3.10 =	30
Z ₁₁ *	*	1	2	3	4	5	6) 7	8	9	10	_	8
	1	1) 2	3	4	5	6	7	8	9	10	10.10	= 1
	2) 2 2	4	6	8	10	1	10	5 2	7	9		
	4	3)4	8	9) 5	9 y	7 2	10 6	2 10	3	8 7	4.3 mad 11 =	12 m
	5	5	10	4	9	3	8	2	7	1	6	4.4 mal 1 =	
	6 7	6 7	1 2	7 10	2	8 2	3 0	9 5	4	10 2	5 1	, -1	

тυ ULV σ С Э ō Z 4.4 marri -3 10 4-1 = 3 mod 11 Power $J_{11}^{*} = \{1, 2, 3, \dots, 9, 10\}$ XEZIO Tab. Z₁₁* $\mathcal{J}_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ 9 10 Λ DEF: In - In $DEF_2(\mathbf{X}) = 2^{\times} mod P$ í456 8 7 9 10 Fermatth. $Carol(I_{10}) = |I_{10}| = 10$ \Rightarrow card $(I_{n0}) = card (I_{m}^{*})$ $\operatorname{Card}\left(\mathcal{I}_{M}^{*}\right)=\left|\mathcal{I}_{M}^{*}\right|=10$ It is proved that ; if p is prime, then there exists such numbers g that DEFg(X) provides 1-to-1 or bijective mapping. Fermet little th. Power Tab. **Z**11* The set of numbers Λ are generating all the (2 numbers in the set In is named as a set of apportor r=12.67.83

3 5 9 3 I 4 5 T is named as a set of 5 9 4 4 1 5 91 3 5 3 1 generator $\Gamma_{H} = \{2, 6, 7, 8\}$ 6 1 6 2 3 7 9 10 5 8 4
 7
 1
 7

 8
 1
 8
 5 2 3 10 9 6 4 10 4 6 9 8 1 3 2 -5 7 1 1 9 4 3 5 1 9 4 3 5 1 1 10 1 10 1 10 1 10 1 10 1 10

Let G be a finite group with Gard (G)= |G|=N. Def. 1. The element g is a generator if g, i=0,1,2, N-1, generates all N elements of G. Def. 2. The group G which can be generated by generator g is a cyclic group and is denoted by <g>=G. $< J_{p}^{*}, *_{modp} >; J_{p}^{*} = \{1, 2, 3, ..., p-1\}; p \sim 2^{2048} \approx 10^{670}$ If g is a generator: Zp = {ge (e=0,1,2,..., p-2} $e \in \mathbb{Z}_{p-1} = \{0, 1, 2, \dots, p-2\}$

T2. Fermat (little)Theorem. If p is prime, then [Sakalauskas at al.]

z^{*p*-1} = 1 mod *p*

Using this theorem we can prove that if z=g is a generator then DEF is 1-to-1 mapping: DEF: $Z_{p-1} \rightarrow Z_p^*$; DEF(x) = $g \mod p = a$.

computation of exponent values in Ip a x. + z mod p $a^{p-1} \mod p = 1 = a^{\circ} \mod p \Rightarrow p-1 \equiv 0 \mod (p-1)$ The exponent relation X.y+z $\begin{array}{c|c} p-1 & p-1 \\ \hline p-1 & 1 \\ \hline \end{array}$ can be reduced mod (p-1) $(a^{x\cdot y+z}) \mod p = a^{(x\cdot y+z) \mod (p-1)} \mod p$

C.5.3 Finding generators.

We have to look inside Z_{P}^{*} and find a generator. How?

Even if we have a candidate, how do we test it?

The condition is that $\langle g \rangle = G$ which would take |G| steps to check: $p^{\sim}2^{2048} \rightarrow |G|^{\sim}2^{2048}$.

In fact, finding a generator given *p* is in general a hard problem.

We can exploit the particular prime numbers names as strong primes.

If *p* is prime and *p*=2*q*+1 with *q* prime then *p* is a strong prime.

Note that the order of the group Z_{P}^{*} is p-1=2q, i.e. $|Z_{P}^{*}|=2q$.

Fact C.23. Say p=2q+1 is strong prime where q = (p-1)/2 is prime, then g in \mathbb{Z}_{P}^{*} is a generator of \mathbb{Z}_{P}^{*} iff $g^{2} \neq 1 \mod p$ and $g^{2} \neq 1 \mod p$.

Testing whether g is a generator is easy given strong prime p.

Now, given p=2q+1, the generator can be found by randomly generation numbers g < p and verifying two relations. The probability to find a generator is ~0.4.

How to fing more generators when **g** one is found? **Fact C.24**. If **g** is a generator and **i** is not divisible by **q** and **2** then g^i is a generator as well, i.e. If **g** is a generator and gcd(i,q)=1 and gcd(i,2)=1, then g^i is a generator as well.

How to find inverse element to z mod n? >> mulinv(z.n)

Inverse elements in the Group of integers $\leq Z_p^*$, $\frac{\bullet_{mod p}}{\bullet_{mod p}} >$ can be found using either Extended Euclidean algorithm or Fermat theorem, or ...

 $Z \in Z_p^*$; to find \overline{z}^1 such that $z \cdot \overline{z}^1 = \overline{z}^1 * z = 1 \mod p$ $z^{p-1} = 1 \mod p / \cdot \overline{z}^{1} \implies z^{p-1} \cdot \overline{z}^{1} = \overline{z}^{1} \mod p \implies$ $\implies \overline{z}^{1} = z^{p-1}, \overline{z}^{1} \mod p \implies \overline{z}^{1} = z^{p-2} \mod p$ $Z^{-1} = Z^{P-2} \mod P$ >> z.m1 = mulinv(z,p) operations in exponents. a' a' mod p = a^{(t+s} ad(p-1) Mod p According to Fermat th.

 $a^{r} \cdot a^{s} \mod p = a^{(r+s)} \mod p^{r} A \ (p-1) \ (a^{r})^{s} \mod p = a^{(r-s)} \mod (p-1) \ mod p \int Ve have:$ $z^{p-1} = 1 \mod p$ $\longrightarrow 0 \equiv p-1 \pmod p$ $x = p-1 \mod (p-1)$ $z^{p-1} = 1 \mod p$ Needed example : to compute $s = t + x \cdot h \mod(p-1)$ when s is in exponent of the generator g: $g^{s} = g^{(t+x \cdot h) \mod(p-1)} \mod p = g^{t} \cdot (g^{x})^{h} \mod p.$ Sign (Prk, h) = (P, S) PaPublic Parameters generation PP = (p,g)p-strong prime => it is easy to generate generator g by randomly choosing g values with probability ~ 0.4. >> p = _268 435 019; _% 2^28 --> >> int64(2^28-1) % ans = **268 435 455** >> g=2; % testing g=2, g=3, Private and Public Keys generation PrK = X PuK = α $X = randi(2^{28})^{1/2}$ $\Omega = g^{\times} \mod P$ Security of PrK is based on the difficulty of Discrete Logarithm Problem - DLP. When p ~ 2²⁰⁴⁸, then DLP is infeasible for classical -- non-quantum computers.

O POR PrK. B Grogle For Ethereum Go: 1. Prk & Puk generation 2. Smart contract signing malware 2 Solidity Net Secure PrK, Puk generation & signing computer X (PrK, PUK) - Flashtoken Go Trust (Taiwan)