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XOR and AND logical operations in Boolean algebra can be
illustrated by dartboard game.
Single Boolean variable can be represented by the set of 2
' —a values {0,1} or {Yes,No} or {True,False}.
* @ Let U is some universal set containing all other sets (we do not
) takke into account paradoxes related with U now).
’ Let A be a set in U. Then with the set A in U can be associated

a Boolean variable ba=1 if area A is hit by missile
ba=0 otherwise.

For this single variable ba the negation operation " is defined:

bA‘:O if bA:].,

bA‘=1 if bA=0.

Bollean operations are named also as Boolean functions.

Since negation operation/function is performed with the singe variable it is called a unary operation.

There are 16 Boolean functions defined for 2 variables and called binaryfunctions.
Two of them XOR and AND are illustrated below.
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Venn diagram of A®B operation. Venn diagram of A&B operation.
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Let we have any set G (not necessary finite) consisting of the elements of any nature, i.e.
G={a, b,c, ...,z ...}.
1. Definition. A set G is an algebraic group if it is equipped with a binary operation e
that satisfies four axioms:
Operation e is closed in the set; for all a, b, there exists unique ¢ in G such that aeb=c.

. Operation e is associative; for all a, b, c in G: (aeb)ec=ae(bec).

. Group G has an neutral element abstractly we denote by e such that aee=ecea.

. Any element a in G has its inverse a*! with respect to e operation such that aea!= a-lea=e.
. If aeb = bea then group G is commutative group.

Division operation is defined: a:b = aeb!

To divide a by blit is necessary to find multiplicatively inverse elemet b to b such that
b-leb = beb! =1,

We will deal with commutative groups.

For curiosity, can be said that group axioms seems very simple but groups and their mappings
describes a very deep and fundamental phenomena in physics and other sciences. Among
these mappings a special importance have mappings preserving operations from one group to
another called isomorphisms, or homomorphisms and morphisms in general. Isomorphisms
have a great importance in cryptography to realize a secure confidential cloud computing. It is
named as computation with encrypted data. The systems having a homomorphic property are
named as homomorphic cryptographic systems. They are under the development and are very
useful in creation of secure e-voting systems, confidential transactions in blockchain and etc.
There we present one very important isomorphism example later when consider so called
discrete exponent function (DEF).

TL.Theorem.If P is prome , therr Ly ={4,2,2, ..., p-1] whete gocration
is mllipliation dnacd p iz a wmblipbicative gromp: <y | Fmod p
Example : P=41 =2 5 =47,2,5, .., ,10}
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https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Binary_operation
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T2. Fermat (little)Theorem. If p is prime, then [Sakalauskas at al. ]
zPl=1modp

Using this theorem we can prove that if z=g is a generator then DEF is 1-to-1 mapping:
DEF: Z,,—> Z,%;
DEF(x) =g mod p = a.

JDW/W(W/WW ﬂ% £) 0 el valilh bZTf

a”“ " pod p
o et p = 4 = O od p =2 pt =(0) wid (p-1)
The experen? re ot lon X dtz _P"f LF‘(—‘

can Vp e Wﬁ&/(p ~1) >
(d X ZJ wod p = QCX‘JJFZ)WWC/@%)OO&?/F
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C.5.3 Finding generators.

We have to look inside Zp* and find a generator. How?

Even if we have a candidate, how do we test it?

The condition is that <g> = G which would take |G| steps to check: p~22048 --> |G| ~2204,
In fact, finding a generator given p is in general a hard problem.

We can exploit the particular prime numbers names as strong primes.
If p is prime and p=2g+1 with g prime then p is a strong prime.

rime, then g in Zp* is a generator of Zp* .

rime where q = (p-1)/2 i

1 mod p and@i@;b_l_m_gd_pj
Testing whether g is a generator is easy given strong prime p.

Now, given p=2qg+1, the generator can be found by randomly generation numbers g<p and verifying
two relations.The probability to find a generator is ~0.4.

How to fing more generators when g one is found?
Fact C.24. If g is a generator and i is not divisible by g and 2 then g’ is a generator as well, i.e.
If g is a generator and gcd(i,q)=1 and gcd(i,2)=1, then ¢'is a generator as well.

How to find inverse element to z mod n?
>> mulinv(z,n)

Inverse elements in the Group of integers <Z,", ® mod p> can be found using either
Extended Euclidean algorithm or Fermat theorem, or ...
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Needed exomple : 2o compd s = ¢+ X-h w(p-1)
W hon S s zx/mﬁénf V%#LZ ZM@%&# g:

_ @+ b )wowd (p-1) ¢, ylh
i p = g% (27) wed p,

Public Botmmetots generadion
PP=(P;9)
p —<trong prime = i is ety 0 gmzm"k e v A0 Z
by tandomy cheovsing Q wglues with fwéz/z?&%gmﬁ.éf.

>>p= 268435019, % 2728 -->>>int64(2/28-1)
% ans = 268 435 455
>> g=2; % testing g=2, g=3, .....
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